The Samsung Galaxy S4 comes with this LTE Advanced. This advance technology can increases the speed up to 3.3 Gbit peak download rates per sector of the base station under ideal conditions.
One of the important LTE Advanced benefits is the ability to take advantage of advanced topology networks; optimized heterogeneous networks with a mix of macrocells with low power nodes such as picocells, femtocells and new relay nodes. The next significant performance leap in wireless networks will come from making the most of topology, and brings the network closer to the user by adding many of these low power nodes — LTE Advanced further improves the capacity and coverage, and ensures user fairness. LTE Advanced also introduces multicarrier to be able to use ultra wide bandwidth, up to 100 MHz of spectrum supporting very high data rates.
In the research phase many proposals have been studied as candidates for LTE Advance technologies. The proposals could roughly be categorized into:-
- Support for relay node base stations
- Coordinated multipoint (CoMP) transmission and reception
- UE Dual TX antenna solutions for SU-MIMO and diversity MIMO
- Scalable system bandwidth exceeding 20 MHz, up to 100 MHz
- Carrier aggregation of contiguous and non-contiguous spectrum allocations
- Local area optimization of air interface
- Nomadic / Local Area network and mobility solutions
- Flexible spectrum usage
- Cognitive radio
- Automatic and autonomous network configuration and operation
- Support of autonomous network and device test, measurement tied to network management and optimization
- Enhanced precoding and forward error correction
- Interference management and suppression
- Asymmetric bandwidth assignment for FDD
- Hybrid OFDMA and SC-FDMA in uplink
- UL/DL inter eNB coordinated MIMO
- SONs, Self-Organizing Networks methodologies
- Multiple carrier spectrum access
No comments:
Post a Comment